
Finite-size corrections to the chemical potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys.: Condens. Matter 4 679

(http://iopscience.iop.org/0953-8984/4/3/009)

Download details:

IP Address: 171.66.16.159

The article was downloaded on 12/05/2010 at 11:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/3
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Ph.ys.: Candenn. Matter 1 (1992) 6 W 9 1 .  Printed in the UK 

Finite-size corrections to the chemical potential 

J Ilja Siepmanntt, Ian R McDonaldt and Daan Frenkelq 
t Department of Chanirtry, Univesity of C-bzidge, Lmsfidd Road, Cambridge 
CB2 1EW, UK 
5 FOM Institute for Atomic and Mol& Physics, Kruirksn 407,1098 SJ b t u -  
dam, The Netherlands 

Fkceived 25 July 1991, in final fmm 28 Auguat 1991 

Abstract. The partideinseation method of Widom hw been widely used in -- 
erical simulations for the purpose of calculating the excess chemical potential, *el. 
It is known, however, that values of 14% obtained by Widom's method are strongly 
dependent on N, the number of particles in the system. We use the f o r "  of the 
grand-canonical ensemble to derive an expression for the leading term in the finit- 
size correction to per. The new expreion reduces to the exact result for hard rod. 
and gives numerical results in good agrement with those of simulations of hard-disk 
and hadsphere fluids. It is. in both respects. an improvement o w  an exprersicn 
previously deriwd by Smit and Eknkel via a thermodynamic argummt. 

1. Introduction 

The chemical potential of any species is defined thermodynamically as the change in 
free energy that occurs when one particle of that species is added to the system of 
interest. Almost 30 years ago, Widom (1963) showed that the excess chemical poten- 
tial, pex, of a classical fluid can be calculated from the mean value of the Boltzmann 
factor associated with the random insertion of a test particle. Widom's result has 
subsequently provided the basis for most calculations of the chemical potential in 
Monte Carlo and molecular-dynamics simulations. However, it has been known for 
some time that the excess chemical potential calculated in this way is strongly system- 
size-dependent (Adams 1974, Heinbuch and Fischer 1987). Computer simulations are 
typically carried out for periodic systems in which the fundamental cell contains of 
the order of 10' to lo3 particles, and the correction needed to give the infinite-system 
result can therefore be large. It is always possible to e s h a t e  the correction empiri- 
cally by carrying out simulations for different values of N (the number of particles), 
but this is very time consuming. It would clearly be much more convenient if the 
finite-size correction were known explicitly, since it would then be possible to estimate 
the chemical potential in the thermodynamic limit on the basis of results obtained 
from simulations of relatively small systems. In a recent paper, Smit and Frenkel 
(1989) derived an expression for the leading (order N-') N-dependence of pex. They 
followed an argument similar to one used by Vrij (1985) in a novel derivation of the 
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Omstein-Zernike compressibility relation. The basic idea is to interpret the chemical 
potential as the reversible work needed to add a particle to the system; this work is 
larger for insertion of a particle into a finite volume than for insertion into an infinite 
system at the same density. Smit and Frenkel find that to the lowest order in N-' 
the correction to the chemical potential is 
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2 

Apex(N)  = 2N (E) 8 p  [l - kBT (g)] 
where p = N/V (in three dimensions) is the number density. The appropriate correc- 
tion can therefore be calculated if the equation of state of the system is known. For 
a fluid of hard spheres of diameter d, the equation of state, Z(q) = PP/p, and the 
compressibility are related by 

where p = (kg7')-l  and = N?rd3/6V is the packing fraction. In their numerical 
work Smit and Frenkel used the Carnahan-Starling equation of state (Carnahan and 
Starling 1969) to estimate the finite-size corrections to the excess chemical potential of 
hard spheres at a number of densities, and compared their results with those obtained 
by Monte Carlo simulation. Fair agreement was found, but the uncertainties in the 
Monte Carlo results meant that the comparison was not wholly conclusive. 

It is of considerable interest to determine whether equation (1 )  is generally appli- 
cable. As we shall see below, this is not the case. In particular, we show in appendix A 
that A p e x ( N )  can be calculated analytically for a one-dimensional system of hard rods 
of length d in a container of length L, often called the Tonks gas (Tonks 1936). The 
result depends on the boundary conditions; for the periodic Tonks gas we find that 

where the packing fraction is now defined as q = Nd/L .  On the other hand, the 
derivation of equation (1) is independent of the dimensionality of the system. In 
principle, therefore, it should be possible to apply equations (1) and (2) to the hard- 
rod problem, with the density redefined as p = N/L .  Use of the known, exact, 
hard-rod equation of state, equation (Al) ,  in (1) and (2) gives 

which is larger than the exact result (3) by a factor (2 - v ) ~ ,  We have, in addition, 
carried out a series of Monte Carlo calculations on systems of hard disks of diameter d 
in an area A,  for which p = N / A  and q = adZ/4A, and again find significant deviations 
from the predictions of equation (1). 

Prompted by the discrepancies noted above, we have developed a different ap- 
proach to the derivation of a theoretical expression for the finite-size correction. We 
show in Appendix B that Ap, , (N)  can be obtained directly from consideration of the 
difference in reversible work needed to insert a particle into systems of the canonical 
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and grand-canonical ensembles at the same volume and temperature. The leading 
term is now 

This differs from the expression derived by Smit and Frenkel (equation (1) of the 
present paper) but has the new and encouraging feature of reducing to the exact 
result for the periodic Tonks gas (equation (3)). In Section 3, we show that the 
predictions of equation (5) are also in quantitative agreement with the results of 
Monte Carlo simulations of the two-dimensional hard-disk fluid (this work) and with 
those of earlier hard-sphere simulations (Smit and Frenkel 1989, Adams 1974). First, 
however, we consider the results of calculations for the hard-rod system. 

2. The hard-rod fluid 

Although the derivation of equation (3) is exact, the quoted result is correct only to 
order N-I. It is not clear to what extent the neglect of higher-order terms is justified 
for the system sizes typically used in simulations. As a test of this assumption, we have 
carried out a series of Monte Carlo calculations for the periodic Tonks gas in which the 
excess chemical potential of the fluid was calculated by Widom’s insertion method. 
A number of system sizes (10 < N < 400) were studied at three different densities, 
corresponding to packing fractions = 0.4, 0.5 and 0.6. The initial configuration 
was in each case taken as one in which the N hard rods were regularly distributed 
with a spacing equal to L/N, and the system was allowed to equilibrate before the 
calculation of the chemical potential w a s  attempted. The maximum displacement 
of the rods during a translational Monte Carlo move was chosen so as to yield an 
acceptance ratio of approximately 50%. In the calculal.ion of pex, each Monte Carlo 
cycle was followed by Ntpy (% N/2) insertions of a test particle at random positions, 
a cycle being defined as N attempts to move randomly chosen particles. Details of 
the calculations and the results obtained for pex are given in table 1. The statistical 
uncertainties quoted in the table were estimated in the usual way, i.e. by dividing 
the total simulation into blocks of equal length and calculating the standard error of 
the mean of the block averages. The N-dependence of pex is illustrated in figure 1, 
together with results calculated from equations (3) and (4). As expected the values of 
pex obtained by simulation vary approximately linearly with 1/N; the magnitude of 
the N-dependent correction increases with increasing density both in absolute terms 
and relative to the N -+ 00 limit. To allow a more quantitative comparison between 
theory and simulation, a weighted, linear, least-squares fit (see, for example, Squires 
(1968)) to a function of the form a+ b,” has been carried out on the results of table 1. 
The value oftbe intercept a is the excess chemical potential in the infinite-system limit, 
pg, for which the exact result is given by equation (A4). The Monte Carlo result for 
N = 10, q = 0.6 was excluded from the fit because it deviates significantly from the 
best straight line through the other points. It would not be surprising if, at such a 
small value of N ,  there were an appreciable contribution to Ap,,(N) from the term of 
order N-’. The fitted lines are also plotted in figure 1 and the results are summarized 
in table 2. Agreement with the exact results of equations (A4) and (3) is excellent. 
Hence, except possibly for very small systems (N % 10 or less) at high density, the 
neglect of terms of order N-’ in A p e x ( N )  is justified. 
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11 N 
Figure 1. The excccs chrmicsl potential Opex of the To& gas - a Iunction of 
the reciprocal number of particles for ‘I = 0.4 (A), 0.5 (B), and 0.6 (C). Open- 
cirdes and diamonds show the simulation results for the periodic and hard- wal l  we, 
respectively, and thecrosses give the theoretical valuescalculatedfromequlustion (A4). 
The full h e s  are obtained from weighted linear fits 01 the simulation results; the 
broken lines are calculated from equation (4) and the dotted lines from equations (3) 
and (A9) for the periodic and herd-wall c-es, respectively. 

Table 1. Summary of the Monte Carlo simulations of the periodic To& gas: ‘I is 
the padring fraction; N is the number of particles; MC~,, and MCpr are the numbers 
of equilibration cycles and pmduction cycles, mpectively; Ntry is the number 01 
attempts to insert a test particle after each cycle; and pLrr in the excess chemical 
potential. 

0.4 10 200 
25 50 
50 150 
100 50 
200 15 

0.5 10 110 
25 50 
50 110 

100 55 
200 15 
400 9 

0.6 10 200 
25 50 
50 150 
100 50 
200 15 
400 10 

500 
750 
500 
250 
100 
1000 
750 
500 
250 
100 
50 
500 
750 
500 
250 
150 
45 

10 1.2(1057i0.00033 
20 1.18727 i 0.000 74 
25 1.18195i0.00054 
50 
100 1.18052iO.00092 
IO 1.74724~0.00060 
20 1.712 87 i 0.00086 
25 1.70478&0.00090 
50 1.701 1 i 0.001 2 
100 1.701 0 i 0.001 3 
200 1.682 9 * 0.001 7 
10 2.541 6 i 0.002 4 
20 2.4633 i 0.001 5 
25 2.4393&0.0019 
50 2.431 7 i 0.001 6 
100 2.4064~0,0064 
200 2.4130i 0.0056 

1.179 7 f 0.001 0 

Also plotted in in figure 1 are the results obtained from non-periodic, hard-wall 
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Table 2. Values of the infinitesystem excess chemical potential, o&, and finite 
size corrections, N 0 A k x ( N ) ,  for the periodic Tonks g s :  7 is the pa&ing fraction, 
MC denotes the Monte Carlo results; and T denoter results obtained from the exact 
equations (A4) and (3). 

owz N P A v e x ( N )  

n MC 7 MC 7 

0.4 1.17795 * 0.00052 1.177492 0.2260 * 0.0069 0,2222 
0.5 1.6% 1 f 0.0026 1.6% 147 0.539 f 0.040 0.5 
0.6 2.4177f0.0037 2.416291 1.14f0.13 1.125 

simulations of the Tonks gas at rl = 0.5. The hest straight line through the data 
points extrapolates to give essentially the same estimate of p: as in the periodic case, 
but the N-dependence is now much stronger. The agreement with the corresponding 
exact result, equation (A9), is again very good. 

3. The hard-disk fluid 

No exact results are available for the equation of state or the chemical potential of the 
hard-disk fluid. However, an equation of state due to Henderson (1975) 

is known to give accurate results at densities up to the fluid-solid transition, 7 ~3 

0.68 (Alder and Wainwright 1962). The resulting expression for the excess chemical 
potential is 

and the system-size correction obtained by substitution of (2) and ( 6 )  into (5) is 

with A = 1 + 
To provide a test of the theoretical predictions, new Monte Carlo calculations have 

been carried out for the hard-disk fluid over a range of densities and N = 25, 49, 100, 
196, and 400. The same general procedures were followed as in the hard-rod case 
(section 2). The chemical potentials determined for the 100-disk system by Widom's 
method are plotted in figure 2, together with results calculated from Henderson's 
equation (7). Excellent agreement is obtained up to q a 0.65, which is close to the 
freezing transition. The level of agreement is partly fortuitous, since the infinite-system 
results (see below) are systematically lower than those predicted by equation (7), but 

+ 3/8$ + 1/8q3 and B = 1 - q ,  
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Figure 2. Plot of the excess chemical potential @fie. versus the packing fraction q 
for a lOadisk system; the open c i~ l ep  show the simulation results and the solid Line 
is caldated from Henderson’s equation ( 7 ) .  

it is clear that use of Henderson’s equation of state for the calculation of finite-size 
corrections from either (1) or (5) should entail only negligible error, at least for q 5 0.6. 

Details of the Monte Carlo simualtions for other values of N are summarized in 
table 3. Table 4 gives the estimates of p z  and A p , ( N )  obtained by fitting the Monte 
CarIo data in the manner already described for hard rods; the results for N = 25 and 
q > 0.3 were excluded, since the quality of the linear fit was thereby significantly 
improved. Table 4 also includes the predicted values of the same quantities, those for 
A p e x ( N )  being derived from equation (5). Two sets of results are given, one based on 
Henderson’s equation (6) and the other obtained from an equation of state proposed 
by Verlet and Levesque (1982), namely 

Agreement with the Monte Carlo values is very good; only at 7 = 0.6 is there any 
substantial disagreement. The two sets of theoretical results differ only slightly from 
each other; other equations ofstate (Kratky 1976,1978, Henderson 1977) that we have 
tested give results intermediate between these two (Siepmann 1991). The results for 
,uex at three densities are plotted as functions of 1/N in figure 3; it is clear from the 
figure that equation (5) is far superior to equation (1) in describing the N-dependence 
seen in the simulations. 

In view of the good results obtained from equation (5) in both one and two di- 
mensions, we have reassessed some earlier results for the chemical potential of the 
hard-sphere fluid. As we have already noted, Smit and Frenkel (1989) found that the 
N-dependence in their results was consistent with the predictions of equation ( l ) ,  used 
in conjunction with the Carnahan-Starling equation of state. However, the statistical 
uncertainties in the Monte Carlo results were large and the system sizes studied were 
rather small. Moreover, the results obtained for N = 32 and 64 at the highest density 
(q = 0.366) deviate significantly from a linear fit (in 1/N) to earlier data on larger 
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Table 3. Summary of the Monte Carlo simulations of the hard-disk fluid m o t a -  
tiom BS in table 1. 

-I N 10-3~~,g 10-3~~p. N,,, ohx 

0.05 25 
49 

100 
196 
400 

0.15 25 
49 
100 
196 
400 

0.3 25 
49 
100 
196 
400 

0.4 25 
49 
100 
196 
400 

0.5 25 
49 
100 
196 
400 

0.6 25 
49 
100 
196 
400 

25 
60 
22.5 
7.5 
36.5 
250 
60 
20 
15 
4 
25 
60 
27.5 
13.5 
3 
25 
60 
27.5 
14.5 
3 
25 
60 
27.5 
25.5 
3 
25 
60 
27.5 
23.5 
3 

600 
500 
300 
100 

1000 
1500 
400 
150 
75 
250 
250 
250 
90 
15 
250 
250 
125 
70 
30 
250 
250 
125 
80 
30 
250 
1000 
500 
160 
45 

62.5 

20 
25 
50 
100 
200 
20 
25 
50 
100 
200 
20 
25 
50 
100 
200 
20 
25 
50 
100 
200 
20 
25 
50 
100 
200 
20 
25 
50 
100 
200 

0.212874* 0.000039 
0.21275 f 0.00011 
0.21242 * O.ooO11 
0.21233 &0.00015 
0.21253f 0.0001'1 
0.732 78 f 0.00025 
0.73087 * 0.000 19 
0.72999*0.00019 
0.72982 f 0.00021 
0.72882 i 0.00028 
1.88374 f 0.00093 
1.8717f0.0013 
1.8635 * 0.0010 
1.861 3 0.001 2 
1.8560 f 0.001 4 
3.0968*0.0032 
3.060 1 f 0.0023 
3.0402 f 0.0018 
3.0259 i 0,0029 
3.031 7 f 0.0030 
4.995 9 * 0.0067 
4.9206 * 0.0043 
4.872 5 f 0.0038 
4.8530 k 0.004 7 
4.8477 0.0060 
8.573 * 0.057 
8.161 f 0.019 
7.999 f 0.022 
7.950 f 0.023 
7.911 f 0.025 

Table 4. Valuesof theinfinite-.ystemexcesschemicalpotential,PIr~, andfinitesize 
corrections, N P A h x  ( N ) ,  for the hard-disk fluid: n is the packing fraction, MC de- 
n o t e  the Monte Carlo results and H and VL denote results derived from equation (5) 
via the equations of state (6) and (9), respectively. 

8fi.Z NPAW.X(W 

n MC H V L  MC H VL 

0.05 0.21237* 0.00009 0.21247 0.21247 0.0127 f 0.0050 0.00927 0.00927 
0.15 0.72904* 0.00020 0.72871 0.72867 0.093f 0.010 0.10661 0.10678 
0.3 1.8557f 0.0014 1.85801 1.83676 0.79*0.12 0.66215 0.66291 
0.4 3.0219*0.0042 3.03031 3.02312 1.84i0.33 1.6903 1.67979 
0.5 4.8322 f 0.0033 4.85650 4.82087 4.26f 0.26 4.1095 3.99301 
0.6 7.873* 0.010 8.02050 7.84406 13.96* 0.75 10.363 9.4701 

systems (Adam 1974). The situation is summarized in table 5,  which shows that the 
effect of including the results for large systems is to bring the Monte Carlo estimates 
of Apex(N)  into good agreement with those obtained from equation (5). 

Smit and Frenkel (1989) also give some results for the Lennard-Jones fluid, but in 
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..... 
__.. __.. 8.732 

. .  
0.728 

....... 

L.9 

11 N 
Figure 3. The excess chemical potential pp.. of the haddisk fluid M a function 
of the reciprocal number of particles for 1) = 0.15 (A), 0.3 (B), and 0.5 (C); symbol8 
are as in figure 1, with CIOBSS marking values derived from equation (7 ) .  The broltm 
lines are calculated from equation (1) and the dotted lines from equation (5), in both 
cases vie Henderson's equation (6). 

Table 5.  Values of the Iinitesize correction., NPAp. . (N) ,  for the hadsphere 
h i d :  r) is the packing fraction, M C S ~  denotes the Monk Carlo mults of Smit and 
h n M  (1989) MCASF deaotes rrsultr of an unweighted linear fit to a combmation of 
simulation date ( A d a  1974, Smit and FtenkCl1989) and T denotcr the theoretical 
prediction. derived from equation ( 5 )  via the Camahan-Stuling equation of state. 

0.262 2.3 f 0.6' 2 . lb  2.3 
0.314 4.7f 0.9= 4.7b 4.0 
0.366 9.6 * 1.6' 7.85 6.8 

* N = 32,64, end 108 
N = 64,108, and 256 
N = 108, 256, and 864 

that case the statistical errors in the simulations are so large as to mask the differences 
between equations (1) and (5). Comparison between theory and simulation is therefore 
not illuminating. 

4. Conclusions 

Equation (5) is a new expression for the leading size-dependence of the excess chemical 
potential, pex,  as determined by Widom's method. It differs from an earlier result due 
to Smit and Frenkel (1989); that result was derived by a thermodynamic argument 
that now appears to have been incorrect, presumably because fluctuations were not 
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properly taken into account. The new expression reduces to the exact result for the 
onedimensional, periodic Tonks gas and gives numerical values in very good agreement 
with those obtained by Monte Carlo calculations for hard disks. The predicted linear 
dependence of /.I- on 1/N does break down when N is sufficiently small, the values 
at which this occurs being dependent on both density and dimensionality. We find, 
however, that the linear relation is valid for the system sizes currently used in numerical 
simulations, i.e. for N of order 10’ or more. The new expression therefore makes 
it possible to extrapolate to the thermodynamic limit results for pex measured for 
system of, say, 100 particles. Provided a reasonably accurate equation of state is 
available, the systematic error incurred in this extrapolation appears to be smaller 
than the statistical errors. in tbe simulatioas. Equation (5), in combination with the 
thermodynamic relations given by Smit and Frenkel (1989), also provides a starting 
point for computation of system-size corrections to pressure and free energy. It could, 
in particular, be used to correct for finite-size effects on the location of firstorder 
phase transitions, since its derivation is independent of the phase (or dimensionality) 
of the system of interest. 

Attention in this paper has been centred on fluids of hard particles in one and 
two dimensions. The reasons for concentrating on such simple models are firstly the 
availability of reliable equations of state, and secondly the fact that that the simulation 
of systems that are ‘large’ in the relevant sense is computationally more economical in 
one or two dimensions than in three. Equation ( 5 )  itself is of wider applicability. There 
is, however, a complication in cases where the potential has an attractive part and 
the derivative (aP/Bp), can therefore vanish. Under these conditions, the expansion 
leading to equation (B6) cannot be truncated in the manner chosen. Thus equation (5) 
is not expected to apply near a spinodal or, U fortiori, near a critical point. 
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Appendix A. The Tonks gas 

The equation of state of the Tonks gas is known exactly (Zernike and Prins 1927, 
Herzfeld and Mayer 1934, Tonks 1936) as 

If Fe, is the excess Helmholtz free energy and p,, is the excess chemical potential, 
then 

11 d9’ 
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and 
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Insertion of (Al) into (A2) and use of (A3) gives 

The system-size dependence of pex for the Tonks gas can be derived from first princi- 
ples. Consider first the case of a periodic system. The configurational integral divided 
by the configurational integral of the ideal gas is 

N L - N d  
Q,/QE = (E) 

The change in excess free energy as the number of particles is increased by one is 

Assuming that d/(L - Nd) is small, we find that 

where p g  is the excess chemical potential in the thermodynamic limit, given explicitly 
by equation (A4), and the correction term, to order N-',  is that given by equation (3) 
of the main text. 

The analogue of (A5) for a system of hard rods confined between hard walls is 

Q,v/Q!$ = (1 - V I N .  (AS) 

Similar manipulation to that outlined above now gives 
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Append= B. A general expression for Ape, (N)  

Consider the reversible work required to insert a tagged particle into a volume V in 
contact with a reservoir of untagged particles at a chemical potential p .  The work 
required is equal to the change in grand potential and is therefore given by 

(B1) 

where f ( T )  is the contribution to the canonical partition function that arises from 
integration over the momenta, qN+' denotes the coordinates of the tagged particle, 
8 denotes the global coordinates of the remaining particles in the system, and AV is 
the energy of interaction between the tagged particle and the others. In what follows, 
we shall replace f(T) exp(Pp) by the symbol z. 

The integral in the numerator of equation (Bl) is the configurational integral of a 
system with N + 1 particles. Thus 

- - -In($) 

where the second equality is obtained by replacing the dummy index N in the numer- 
ator by N' N + 1. As the chemical potential of an ideal gas at a density p = ( N ) / V  
is pid(p) = EBThl./f(T)],  it follows that (B2) can be rewritten as 

wrev = I" - pid((N)/V) E pex((N)/V). (B3) 

Hence the reversible work required to insert a tagged particle in an open system of 
volume V is equal to the excess chemical potential of a system at the average density 
p = (N)/V. The work required is independent of V. Thus wrey = pg((N)/V), where 
the superscript CJ denotes a property of an infinite system. With this identification, 
equation (Bl) can be rewritten as 

where 
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is the probability of finding a system of the grand-canonical ensemble in a state with 
precisely N particles. In other words, p g ( ( N ) / V )  is equal to the average over all N of 
the mean Boltzmann factor associated with the addition of a test particle to a system 
of N partidas. The mean Boitsmann factor is the quantity that yields the excess 
chemical potential in Widom’s insertion method (Widom 1963). We shaII therefore 

We now expand P ( N )  around (N). This, in fact, is a slightly subtle step, because 
IN)  is not the same as the most probable value of N. However, the difference is 
important only for corrections of order N-’. Denoting (N - (N)) by AN, we can 
write 

J I Siepmann ef a2 

denote (exPI--PA.IIJ)NYT by exp[-Pd%N, V,  

) (ANY] W) P a 2 ~ ( ~ , v , ~ )  
P ( N )  SY c a p  1-2 ( 

a N 2  

The next step is to expand pzd(N,V,T) around the average density: 

,O~~*(N,V,T) = p P : d ( ( ~ ) ,  v, q + P (%) AN + P (-) a2PeX   AN)^ + . .. 

ew(-PpEd(N,V,T)] =~~P[-PP$~(@”,V,T)]  [ l - P ( = ) A N  apex 

rB7) 
and follow tbishyexpandingexp[-P(p~d(N,V,T)-p~d((N),V,T))] tosecondorder 
in AN: 

We also require the following thermodynamic relations: 
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