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Abstract. The particle-insertion method of Wicdom has been widely used in num-
erical simulations for the purpose of calculating the excess chemical potential, frex.
It is known, however, that values of u.; obtained by Widom’s method are strongly
dependent on N, the number of particles in the system. We use the formalism of the
grand-canonical ensemble to derive an expression for the leading term in the finite-
size correction to ptex. The new expression reduces to the exact result for hard rods
and gives numerical results in good agreement with those of simulations of hard-disk
and hard-sphere fluids. It is, in both respects, an improvement over an expression
previously derived by Smit and Frenkel vic a thermodynamic argument.

1. Introduction

The chemical potential of any species is defined thermodynamically as the change in
free energy that occurs when one particle of that species is added to the system of
interest. Almost 30 years ago, Widom (1963) showed that the excess chemical poten-
tial, fi,,, of 2 classical fluid can be calculated from the mean value of the Boltzmann
factor associated with the random insertion of a test particle. Widom’s result has
subsequently provided the basis for most calculations of the chemical potential in
Monte Carlo and molecular-dynamics simulations. However, it has been known for
some time that the excess chemical potential calculated in this way is strongly system-
size-dependent (Adams 1974, Heinbuch and Fischer 1987). Computer simulations are
typically carried out for periodic systems in which the fundamental cell contains of
the order of 102 to 10® particles, and the correction needed to give the infinite-system
result can therefore be large. It is always possible to estimate the correction empiri-
cally by carrying out simulations for different values of V (the number of particles},
but this is very time consuming. It would clearly be much more convenient if the
finite-size correction were known explicitly, since it would then be possible to estimate
the chemical potential in the thermodynamic limit on the basis of results obtained
from simulations of relatively small systems. In a recent paper, Smit and Frenkel
(1989) derived an expression for the leading (order N~!} N-dependence of p,,. They
followed an argument similar to one used by Vrij (1985) in a novel derivation of the
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Ornstein-Zernike compressibility relation. The basic idea is to interpret the chemical
potential as the reversible work needed to add a particle to the system; this work is
larger for insertion of a particle into a finite volume than for insertion into an infinite
system at the same demsity. Smit and Frenkel find that to the lowest order in N™!
the correction to the chemical potential is

st () v ()]

where p = N/V (in three dimensions) is the number density. The appropriate corree-
tion can therefore be calculated if the equation of state of the system is known. For
a fluid of hard spheres of diameter d, the equation of state, Z(n) = BP/p, and the
compressibility are related by

aP d
8 (5;) =2 w2 (@)

where 8 = (kgT)~! and n = Nwd®/6V is the packing fraction. In their numerical
work Smit and Frenkel used the Carnahan-Starling equation of state (Carnahan and
Starling 1969) to estimate the finite-size corrections to the excess chemical potential of
bard spheres at a number of densities, and compared their results with those obtained
by Monte Carlo simulation. Fair agreement was found, but the uncertainties in the
Monte Carlo results meant that the comparison was not wholly conclusive,

1t is of considerable interest to determine whether equation (1) is generally appli-
cable. As we shall see below, this is not the case. In particular, we show in appendix A
that Ap,, . (N) can be calculated analytically for a one-dimensional system of hard rods
of length d in a container of length L, often called the Tonks gas (Tonks 1936). The
result depends on the boundary conditions; for the periodic Tonks gas we find that

BAs(N) = :2'%.,7 (ﬁ)z (3)

where the packing fraction is now defined as n» = Nd/L. On the other hand, the
derivation of equation (1) is independent of the dimensionality of the system. In
principle, therefore, it should be possible to apply equations {1) and (2) to the hard-
rod problem, with the density re-defined as p = N/L. Use of the known, exact,
hard-rod equation of state, equation (Al), in (1) and (2} gives '

{1 —m2\?2
BApe(N} = % (%%) (4)

which is larger than the exact result {3) by a factor (2 — )% We have, in addition,
carried out a series of Monte Carlo calculations on systems of hard disks of diameter d
in an area A, for which p = N/A and n = 7d2/4A, and agein find significant deviations
from the predictions of equation {1).

Prompted by the discrepancies noted above, we have developed a different ap-
proach to the derivation of a theoretical expression for the finite-size correction. We
show in Appendix B that Ay, (N) can be obtained directly from consideration of the
difference in reversible work needed to insert a particle into systems of the canonical
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and grand-canonical ensembles at the same volume and temperature. The leading
term is now

This differs from the expression derived by Smit and Frenkel (equation (1) of the
present paper) but has the new and encouraging feature of reducing to the exact
result for the periodic Tonks gas (equation (3)). In Section 3, we show that the
predictions of egquation (5) are also in quantitative agreement with the results of
Monte Carlo simulations of the two-dimensional hard-disk fluid (this work) and with
those of earlier hard-sphere simulations (Smit and Frenkel 1989, Adams 1974). First,
however, we consider the results of caleulations for the hard-rod system.

2. The hard-rod fiuid

Although the derivation of equation (3) is exact, the quoted result is correct only to
order N~!. It is not clear to what extent the neglect of higher-order terms is justified
for the system sizes typically used in simulations. As a test of this assumption, we have
carried out a series of Monte Carlo calculations for the periodic Tonks gas in which the
excess chemical potential of the fluid was calculated by Widom's insertion method.
A number of system sizes {10 € N £ 400) were studied at three different densities,
corresponding to packing fractions n = 0.4, 0.5 and 0.6. The initial configuration
was in each case taken as one in which the N hard rods were regularly distributed
with a spacing equal to L/N, and the system was allowed to equilibrate before the
calculation of the chemical potential was attempted. The maxirmum displacement
of the rods during a translational Monte Carlo move was chosen so as to yield an
acceptance ratio of approximately 50%. In the calculation of y,,, each Monte Carlo
cycle was followed by N, (=~ N/2) insertions of a test particle at random positions,
a cycle being defined as NV attempts to move randomly chosen particles. Details of
the calculations and the results obtained for p,, are given in table 1. The statistical
uncertainties quoted in the table were estimated in the usual way, i.e. by dividing
the total simulation into blocks of equal length and calculating the standard error of
the mean of the block averages. The N-dependence of p,, is illustrated in figure 1,
together with results calculated from equations {3) and {4). As expected the values of
oy Obtained by simulation vary approximately linearly with 1/N; the magnitude of
the N-dependent correction increases with increasing density both in absolute terms
and relative to the N — oo limit. To allow a more quantitative comparison between
theory and simulation, a weighted, linear, least-squares fit (see, for example, Squires
(1968)) to a function of the form ¢+ &/N has been carried out on the results of table 1.
The value of the intercept a is the excess chemical potential in the infinite-system limit,
u5%, for which the exact result is given by equation (A4). The Monte Carlo result for
N =10, n = 0.6 was excluded from the fit because it deviates significantly from the
best straight line through the other points. It would not be surprising if, at such a
stnall value of N, there were an appreciable contribution to Ag,, (N) from the term of
order N~2, The fitted lines are also plotted in figure 1 and the results are summarized
in table 2. Agreement with the exact results of equations (A4) and (3) is excellent.
Hence, except possibly for very small systems (N & 10 or less) at high density, the
neglect of terms of order N~2 in Ay, (N) is justified.
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Figure 1. The excess chemical potential Su.. of the Tonks gas as a function of
the reciprocal number of particles for 3 = 0.4 (A), 0.5 (B), and 0.6 (C). Open-
circles and diamonds show the simulation results for the periodic and hard-wall cazes,
respectively, and the crosses give the theoretical values calculated from equation (A4).
The full lines are obtained from weighted linesar fits of the simulation results; the
broken lines are calculated from equation. (4) and the dotted lines from equations (3)
and (A9) for the periodic and hard-wall cases, respectively.

Table 1. Summary of the Monte Carlo simulations of the periodic Tonks gas: 7 is
the padking fraction; N is the number of particles; MGCeq and MCp, are the numbers
of equilibration cycles and production cycles, respectively; Ntry is the number of
attempts to insert a test particle after each cycle; and pex is the excess chemical
potential.

n N 1073 Mcyq  107°MCpr Ny Bliex
0.4 10 200 500 10 1.200 57 £ 0.00033
25 50 750 20 1.18727 £ 000074
50 150 500 25 1.181 95 £ 0.00054
100 50 _ 250 50 1.1797 4 0.001 0
200 15 100 100 1.180 52 £ 0.00092
0.5 10 110 1000 10 1.747 24 % 0.00060
25 50 750 20 1.71287 £ 0.00086
50 110 500 25 1.704 78 £+ 0.00090
100 55 250 50 1.7011+0.0012
200 15 100 100 . 1.7010 % 0.001 3
400 9 50 200 16829400017
0.6 10 200 500 10 2.5416 £ 0.0024
25 50 750 20 2.4633 4 0.001 5
50 150 500 25 2.43934 0.0019
100 50 250 50 2.431 7+ 0.0016
200 15 150 100 2.406 4 £ 0.006 4
400 10 45 200 2.4130 % 0.0056

Also plotted in in figure 1 are the results obtained from non-periodic, hard-wail
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Table 2. Values of the infinite-system excess chemical potential, 8 53, and finite-
size corrections, N 8 Apex{N}, for the periodic Tonks gas: n is the packing fraction,
MC denotes the Monte Carlo results; and T denotes results obtained from the exact
equations {A4) and (3).

Buey NBA piex{N)
n MC T MC T
0.4 L1779540.00052 1177492 0.2260+0.0069 0.2222
0.5 16931+ 0.0026 1.693147  0.539+ 0.040 0.5
0.8 2.4177 £ 0.0037 2.416 291 1.14+0.13 1.125

simulations of the Tonks gas at # = 0.5. The best straight line through the data
points extrapolates to give essentially the same estimate of p2% as in the periodic case,
but the N-dependence is now much stronger. The agreement with the corresponding
exact result, equation (A9), is again very good.

3. The hard-disk filuid

No exact results are available for the equation of state or the chemical potential of the
hard-disk fluid. However, an equation of state due to Henderson (1975)

1+ énz
(1-n)°

is known to give accurate results at densities up to the fluid-solid tranmsition, n =~
0.68 (Alder and Wainwright 1962). The resulting expression for the excess chemical
potential is

Z(n) = (6)

__T 21 Ul

and the system-size correction obtained by substitution of (2) and (6) into (5) is

14 B dn+ L?
B (V) = 5 [1- 5 (B4 22T ] Q

with A=14+n+3/8n*+1/8n° and B=1-1n.

To provide a test of the theoretical predictions, new Monte Carlo calculations have
been carried out for the hard-disk fluid over a range of densities and N = 25, 49, 100,
196, and 400. The same general procedures were followed as in the hard-rod case
(section 2). The chemical potentials determined for the 100-disk system by Widom’s
method are plotted in figure 2, together with results calculated from Henderson's
equation (7). Excellent agreement is obtained up to n = 0.65, which is close to the
freezing transition. The level of agreement is partly fortuitous, since the infinite-system
results {see below) are systernatically lower than those predicted by equation (7), but
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Figure 2. Plot of the excess chemical potential Bu.x versus the packing fraction n
for a 100-disk system; the open circles show the simulation results and the solid line
is calculated from Henderson's equation (7).

it is clear that use of Henderson’s equation of state for the calculation of finite-size
corrections from either (1) or (5) should entail only negligible error, at least for 5 < 0.6.

Details of the Monte Carlo simualtions for other values of N are summarized in
table 3. Table 4 gives the estimates of p22 and Ag,_ (N) obtained by fitting the Monte
Carlo data in the manner already described for hard rods; the results for ¥ = 25 and
7 = 0.3 were excluded, since the gquality of the linear fit was thereby significantly
improved. Table 4 also includes the predicted values of the same quantities, those for
Ap. (N) being derived from equation (5). Two sets of results are given, one based on
Henderson’s equation (6) and the other obtained from an equation of state proposed
by Verlet and Levesque (1982), namely

14+37° 7t
2n) = (1—3177;2 - (laf-nn)‘*' - | ©

Agreement with the Monte Carlo values is very good; only at 5 = 0.6 is there any
substantial disagreement. The two sets of theoretical results differ only slightly from
each other; other equations of state (Kratky 1976, 1978, Henderson 1977) that we have
tested give results intermediate between these two (Siepmann 1991). The results for
U, at three densities are plotted as functions of 1/N in figure 3; it is clear from the
figure that equation (3) is far superior to equation (1) in describing the N-dependence
seen in the simulations.

In view of the good results obtained from equation (5) in both one and two di-
mensions, we have re-assessed some earlier results for the chemical potential of the
hard-sphere fluid. As we have already noted, Smit and Frenkel (1989) found that the
N-dependence in their results was consistent with the predictions of equation (1), used
in conjunction with the Carnahan—Starling equation of state. However, the statistical
uncertainties in the Monte Carlo results were large and the system sizes studied were
rather small. Moreover, the results obtained for N' = 32 and 64 at the highest density
(n = 0.366) deviate significantly from a linear fit (in 1/N) to earlier data on larger
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Table 3. Summary of the Monte Carlo simulations of the hard-disk Suid: annota-
tions as in table 1.

n N 103 MCq 1073 MCpr Nuy  Biea
0.05 25 25 600 20 0.212874 % 0.000 039
49 60 500 25 0.21275+ 0.00011
100 22.5 300 50 0.21242 £ 0.00011
198 75 ~ 100 100 0.21233 & 0.00015
400 36.5 62.5 200 0.21253 £ 0.00017
0.15 25 250 1000 20 0.73278 £ 0.00025
49 60 1500 25 0.73087 £ 0.00019
100 20 400 50 0.72999 + 0.00019
186 15 150 100 0.72982 + 0.00021
400 4 75 200 0.728 82 - 0.00028
0.3 25 25 250 20 1.88374 X 0.000953
49 60 250 25 1.871 73 0.0013
100 27.5 250 50 1.8635 £ 0.001 0
196 13.5 90 100 1.8613 £ 0.001 2
400 3 15 200 1.8560 £ 0.001 4
0.4 25 25 250 20 3.0968 £ 0.0032
49 60 250 25 3.0601 + 0.0023
100 27.5 125 50 3.0402 4 0.0018
196 14.5 70 100 302591 0.0029
400 3 30 200 3.0317 £ 0.0030
0.5 25 25 250 20 49959 + 0.0067
49 60 250 25 4,9206 % 0.0043
100 27.5 125 50 4.8725+ 0,0038
196 25.5 80 100 4.8530 0.0047
400 3 30 200 4.8477 + 0.0060
0.6 25 25 250 20 8.573 £ 0.057
49 60 1000 25 8.151 £ 0.019
100 27.5 500 50 7.999 + 0,022
196 23.5 160 100 7.950 £ 0.023

400 3 : 45 200 7.811 + 0.025

Table 4. Values of the infinite-system excess chemical potential, § u2, and finite-size
corrections, N & Aptex (N}, for the hard-disk Auid: 7 is the packing fraction, MC de-
notes the Monte Carlo results and H and vL denote results derived from equation {5}
via the eguations of state (6) and (9), respectively.

6#:: NgB Qﬂtx(N}

7 MC H VL MC H vL

0.05 0.21237 % 0.00009 0.21247  0.21247 0.0127 4 0.0050 0.00927 0.00927

0.15 0.72904+0.00020 0.72871 0.72867  0.093x0.010 0.10661 0.10678
0.3 1.8557 + 0.0014 1.85801 1.83676 0.79x0.12 0.66215 0.66291
0.4 3.0219+ 00042 3.03031 3.02312 1.34 £ 0.33 1.6203 1.67979
0.5 4.8322 & 0.0033 485650  4.82087 4.26+0.26 4.1095 3.898301
0.6 7.873%0.010 8.02050  7.84408 13.96 1+ 0.75 10.363 9.4701

systems (Adams 1974). The situation is smmmarized in table 5, which shows that the
effect of including the results for large systems is to bring the Monte Carlo estimates
of Ap,, (N) into good agreement with those obtained from equation (5).

Smit and Frenkel (1989) also give some results for the Lennard-Jones fluid, but in
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Figure 3. The excess chemical potential Gyex of the hard-disk fluid as a function
of the reciprocal number of particles for n = 0.15 (A}, 0.3 (B), and 0.5 (C}; symbols
are as in figure 1, with crosses marking values derived from equation (7). The broken
lines are calculated from equation (1) and the dotted lines from equation {5}, in both
cases via Henderson's equation (6).

Table 5. Values of the finite-size corrections, N 8 Apgx(N), for the hard-sphere
flaid: 7 is the packing fraction, MCsy denotes the Monte Carlo results of Smit and
Frenkel {1989) MCasr denotes results of an unweighted linear fit to a combination of
simulation data {Adams 1974, Smit and Frenkel 1939) and T denctes the theoretical
predictions derived from equation (5) via the Carnahan-Starling equation of state.

N ﬁbﬂex (N}
] MCsp MCASF T
0.262 2.3 * 0.6 2.1b 2.3
0.314 4.7+ 0.9* 4.7° 4.0
0.3665 9.6+ 1.6* 7.8¢ 6.8

* N = 32, 64, and 108
b N = 64, 108, and 256
© N = 108, 256, and 864

that case the statistical errors in the simulations are so large as to mask the differences

between equations (1) and (5). Comparison between theory and simulation is therefore
not illuminating,.

4. Conclusions

Equation (5) is a new expression for the leading size-dependence of the excess chemical
potential, y,,, as determined by Widom’s method. It differs from an earlier result due
to Smit and Frenkel {1989); that result was derived by a thermodynamic argument
that now appears to have been incorrect, presumably because fluctuations were not
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properly taken into account. The new expression reduces to the exact result for the
one-dimensional, periodic Tonks gas and gives numerical values in very good agreement
with those obtained by Monte Carlo calculations for hard disks. The predicted linear
dependence of g, on 1/N does break down when N is sufficiently small, the values
at which this occurs being dependent on both density and dimensionality. We find,
however, that the linear relation is valid for the system sizes currently used in numerical
simulations, i.e. for N of order 10 or more. The new expression therefore makes
it possible to extrapolate to the thermodynamic limit results for p,., measured for
system of, say, 100 particles. Provided a reasonably accurate equation of state is
available, the systematic error incurred in this extrapolation appears to be smaller
than the statistical errors in the simulations. Equation {5), in combination with the
thermodynamic relations given by Smit and Frenkel (1989), also provides a starting
point for computation of system-size corrections to pressure and free energy. It could,
in particular, be used to correct for finite-size effects on the location of first-order
phase tramsitions, since its derivation is independent of the phase (or dimensionality)
of the system of interest.

Attention in this paper has been centred on fluids of hard particles in one and
two dimensions. The reasons for concentrating on such simple models are firstly the
availability of reliable equations of state, and secondly the fact that that the simulation
of systems that are ‘large’ in the relevant sense is computationally more economical in
one ot two dimensions than in three. Equation (5} itself is of wider applicability, There
is, however, a complication in cases where the potential has an attractive part and
the derivative (8P/8p)}y can therefore vanish. Under these conditions, the expansion
leading to equation (B6) cannot be truncated in the manner chosen. Thus equation (5)
is not expected to apply near a spinodal or, @ fortiori, near a critical point.
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Appendix A. The Tonks gas

The equation of state of the Tonks gas is known exactly (Zernike and Prins 1927,
Herzfeld and Mayer 1934, Tonks 1936) as '
2= (a1)
17 - 1 _ ,} M

If F,, is the excess Helmholtz free energy and u,, is the excess chemical potential,
then

pFo=N [ ’ 1207 - a (A2)
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and

aFeX
Bﬂex‘"ﬁ(aN)V'T' (A3)

Insertion of {Al) into {A2) and nse of {A3) gives

Bt = ~In(l= 1) + 72~ o (A4)

The system-size dependence of g, for the Tonks gas can be derived from fizst prinei-
ples. Consider first the case of a periodic system. The configurational integral divided
by the configurational integral of the ideal gas is

L-Nd)”_ (45)

an/ai = (55

The change in excess free energy as the number of particles is increased by one is

_ N
BAL, =D [(L—z@rﬁm) - n)]

=_1n[(1-ﬁz)h’ (1—1,)]

d 1 d \?
=-N [_L—Nd ‘§(L—Nd) "'] — ().

(A6)

Assuming that d/(L — Nd) is small, we find that

1 2 2
ﬁAFelefn—lﬂ(l—ﬂ)“Fﬁ(’if—n) =Pex+m'('1—z-;) (A7)

where p2° is the excess chemical potential in the thermodynamic limit, given explicitly
by equation {A4), and the correction term, to order N1, is that given by equation (3)
of the main text.

The analogue of (A5) for a system of hard rods confined between hard walls is

Qn/QN =1 -n". (A8)
Similar manipulation to that outlined above now gives

1 1-(-np?

BALN) = 55 G =

(A9)
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Appendix B. A general expression for Ap, (N)

Consider the reversible work required to insert a tagged particle into a volume V in
contact with a reservoir of untagged particles at a chemical potential . The work
required is equal to the change in grand potential and is therefore given by

fu,,, =T [i exp(BuN) F(T)N v-1 /dq"""l exp [-BU(d")]

Nt
N=0
x exp [—BAU(qn4139")]

% (Z GXP(HP'N)f(T) /quexp[ ﬁU(qN)]) ]

N—

(B1)

where f(T') is the contribution to the canonical partition function that arises from
integration over the momenta, gy, denotes the coordinates of the tagged particle,
g" denotes the global coordinates of the remaining particles in the system, and AU is
the energy of interaction between the tagged particle and the others. In what follows,
we shall replace f(T')exp{Bu) by the symbol z.

The integral in the numerator of equation (B1) is the configurational integral of a
system with N + 1 particles. Thus

Bw, =—In| (zV)7! > N=o % g+ exp [-pU (g +Y)]
w=o 1 [ dg" exp[-BU(a")]

- (E"l) (B2)

2V

where the second equality is obtained by replacing the dummy index N in the numer-
ator by N' = N + 1. As the chemical potential of an ideal gas at a density p = (N)/V
is pia(p) = kaT In[p/f(T)), it follows that (B2) can be rewritten as

= p = pa((N}/ V) = p ((N}/V). (B3)

Hence the reversible work required to insert a tagged particle in an open system of
volume V is equal to the excess chemical potential of a system at the average density

= {N}/V. The work required is independent of V. Thus w,,, = pSS({N}/V), where
the superscript co denotes a property of an infinite system. With this identification,
equation {B1) can be rewritten as

By = (EN__ 2N{:exp( ﬁAU))Nw)

=—In (}g P(N)(exp(—mv)mw) (B4)
where )

pm B @9

- 2?:0 fﬁj{?'-m
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is the probability of finding 2 system of the grand-canonical ensemble in a state with
precisely N particles. In other words, pJ3({N}/V) is equal to the average over all N of
the mean Boltzmann factor associated with the addition of a test particle to a system
of N particles. The mean Boltzmann factor is the quantity that yields the excess
chemical potential in Widom’s insertion method (Widom 1963). We shall therefore

denote (exp[~BAUY ppp by exp[-gull(N,V,T)].

We now expand P{N) around {N}. This, in fact, is a slightly subtle step, becanse
{N} is not the same as the most probable value of N. Hawever, the difference is
tmportant only for corrections of order N~%. Denoting (N — {(N}} by AN, we can

write )= et [_ 2 (2’__}“(;;\;__;3’)) (AN)2} , (B6)

The next step is to expand p¥¢(N,V,T) around the average density:
put v = e vy + 0 (B ) aw+ £ (Ghs ) any +
(B7)
and follow this by expanding exp{~8(p 0 (N, V, T)-~pNid ({ N}, V, T))] to second order
in AN:

exp [-Bui(N, V. T)) = exp [-8ul3 (W), V,T)] {1 -8 (?ﬁ—) AN

aN
v (%) anp - L (a5t) anp + o<AN3>] (88)
We also require the following thermodynamic relations: '
(Z2) v (Byears o
(%‘%) = N~! (%&) +0O(N"7) (B10)

where P,, = P — kg7 is the excess pressure. Substitution of equations {B6) and (BS)
to (B11) in (B4) gives the desired result, namely

Sl = BU(NY, B, T) = B (), ¥, T)
-1 (o) 2 + e (5r)
- [ (aedie) - e e+ )
~ a5 (%8) ()
:
-eis? () + (e )|

= 3 (E) () - et G vo @)
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